Basic results in probability theory

cosmos 16th January 2018 at 12:20pm

Probability cheat sheet webpage

Union bound

Expected number of times I get a certain outcome for a set of random variables with the same sample space, but potentially different and dependent probability distributions

Imagine I have two random variables (XX and YY) each of which can have value AA or BB. Imagine I want to know the expected number of As I get. This will be:

E[number of As]=1p(X=A and Y=B)+2p(X=A and Y=A)E[\text{number of }A\text{s}]=1\cdot p(X=A\text{ and }Y=B)+2\cdot p(X=A\text{ and }Y=A) +1p(X=B and Y=A)+1\cdot p(X=B\text{ and }Y=A)

=(p(X=A and Y=B)+p(X=A and Y=A))=(p(X=A\text{ and }Y=B)+p(X=A\text{ and }Y=A)) +(p(X=B and Y=A)+p(X=A and Y=A))+(p(X=B\text{ and }Y=A)+p(X=A\text{ and }Y=A))

=p(X=A)+p(Y=A)=p(X=A)+p(Y=A)

And this result works whether XX and YY are independent random variables or not. The only thing we require is that getting X=AX=A and X=BX=B are mutually exclusive (and similarly for YY).

Inclusion-exclusion principle

https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle

Boole's inequality