See here
Let X1,...,Xn be independent random variables, where Xi=1 with probability pi and Xi=0 with probability 1−pi. Let X=∑i=1nXi and μ=E[X]=∑i=1npi. Then for α∈[0,1],
- P[∣X−μ∣≥αμ]≤2exp(−2μα2)
A tighter version of the standard Chernoff bound, which uses the Relative entropy