Given an input space XXX and Metric MMM, a function f:X→Rf: X \to \mathbb{R}f:X→R on a Metric space (X,M)(X,M)(X,M) is called a Lipschitz function, or Lipschitz continuous if there exists a constant CMC_MCM such that ∣f(x)−f(y)∣≤CMM(x,y)|f(x) - f(y)| \leq C_M M(x,y)∣f(x)−f(y)∣≤CMM(x,y), for all x,y∈Xx,y \in Xx,y∈X.