Measure

cosmos 8th October 2017 at 8:21pm
Measure theory

A measure μ\mu on a set Ω\Omega, with Sigma-algebra A\mathcal{A}, is a Function μ:A[0,]\mu: \mathcal{A} \rightarrow [0, \infty], s.t.

  1. μ()=0\mu(\emptyset)=0
  2. μ(A)μ(B)\mu(A) \leq \mu(B) if A,BAA,B \in \mathcal{A} and ABA \subseteq B
  3. countable additivity. μ(i=1Ei)=i=1μ(Ei)\mu(\bigcup\limits_{i=1}^{\infty} E_i) = \sum\limits_{i=1}^{\infty} \mu(E_i) for any collection E1,E2,...AE_1, E_2, ... \in \mathcal{A} of mutually disjoint sets.

Specifying a measure on a sigma-algebra is simplified by the

Types of measures

Outer measure


Definition

(PP 1.4) Measure theory: Examples of Measures

(PP 1.5) Measure theory: Basic Properties of Measures