aka partial order homomorphism
A monotone function h:P→Qh: P \to Qh:P→Q (P,QP,QP,Q are posets) is a function such that ∀y∈P.x≤y\forall \,y \in P. x \leq y∀y∈P.x≤y, implies that h(x)≤h(y)h(x) \leq h(y)h(x)≤h(y)