Definition
Let fff be a path from x0x_0x0 to x1x_1x1 and ggg a path from x1x_1x1 to x2x_2x2. Then their product
f∗g:I→Xf *g: I \to Xf∗g:I→X,
(f∗g)(s)={f(2s)0≤s12g(2s−1)12≤s≤1(f*g)(s) = \begin{cases} f(2s)\quad 0 \leq s \frac{1}{2}\\ g(2s-1)\quad \frac{1}{2} \leq s \leq 1 \end{cases}(f∗g)(s)=⎩⎪⎨⎪⎧f(2s)0≤s21g(2s−1)21≤s≤1
Use Pasting lemma to show it is a path
(remember: defined only if f(1)=g(0)f(1) = g(0)f(1)=g(0)
vid