Subcategory

cosmos 14th October 2017 at 10:32pm
Category

Let CC be a Category. Suppose that we are given collections

Ob(D)Ob(C)Ob(D) \subseteq Ob(C), A,BOb(D).D(A,BC(A,B)\forall A,B \in Ob(D). D(A,B \subseteq C(A,B).

We say that DD is a subcategory of CC if

AOb(D)idAD(A,A)A \in Ob(D) \Rightarrow id_A \in D(A,A),
fD(A,B),gD(B,C)gfD(A,C)f \in D(A,B), g \in D(B,C) \Rightarrow g \circ f \in D(A,C)

so that DD itself is a category.

In particular, DD is:

  • A Full subcategory of CC if for any A,BOb(D),D(A,B)=C(A,B)A,B \in Ob(D), D(A,B) = C(A,B)
  • A Luff subcategory of CC if Ob(D)=Ob(C)Ob(D) = Ob(C).

For example, Grp is a full subcategory of Mon, and Set is a lluf subcategory of Rel.