Expectation

cosmos 10th April 2019 at 10:58am

The expectation of Random variable XX under distribution P\mathbb{P} is defined as

E[X]=xxP[X=x]\mathbf{E}[X] = \sum\limits_x x\mathbb{P}[X=x]

If the random variable XX is a function of other random variables z1,...,znz_1,...,z_n, and these have Joint distribution D\mathcal{D}, then we sometimes specify this in the subscript of the big E\mathbf{E},

Ez1,...,znD[X]=z1,...,znX(z1,...,zn)D(z1,...,zn)\mathbf{E}_{z_1,...,z_n \sim \mathcal{D}}\left[X\right] = \sum\limits_{z_1,...,z_n} X(z_1,...,z_n)\mathcal{D}(z_1,...,z_n)