aka mixture of Gaussians
Example in 1D
Algo def
Assume there's a latent (hidden/unobserved) Random variable z and x(i),z(i) have a joint distribution
P(x(i),z(i))=P(x(i)∣z(i))P(z(i))
z(i)∼Multinomial(ϕ)
(ϕj≥0∑jϕj=1)
x(i)∣(z(i)=j)∼N(μj,Σj)
This is very similar to Gaussian discriminant analysis, but where the known labels are substituted by unknown hidden variables z. (vid).
See video – EM for mixture of Gaussians
- Repeat until convergence
- E-step. Guess values of z(i)s. In particular, compute the a-posteriori probability wj(i)=P(z(i)=j∣x(i);ϕ,μ,Σ) =∑l=1kP(x(i)∣z(i)=l)P(z(i)=l)P(x(i)∣z(i)=j)P(z(i)=j) =∑l=1k(2π)2d∣Σl∣211exp{(x(i)−μl)TΣl−1(x(i)−μl)}ϕl(2π)2d∣Σj∣211exp{(x(i)−μj)TΣj−1(x(i)−μj)}ϕj
- M-step. ϕj=m1∑i=1mwj(i). μj=∑i=1mwj(i)∑i=1mwj(i)x(i). Σj=∑i=1mwj(i)∑i=1mwj(i)(x(i)−μj)(x(i)−μj)T